MINERVA Overview

- MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei
- Low Energy (LE) Beam Goals:
 - Study both signal and background reactions relevant to oscillation experiments (current and future)
 - Measure nuclear effects on exclusive final states
 - as function of a measured neutrino energy
 - Study differences between neutrinos and anti-neutrinos
 - Precise understanding important for oscillation expt's
- Medium Energy (ME) Beam (NOvA) Goals:
 - Structure Functions on various nuclei
 - Study high energy feed-down backgrounds to oscillation expt's
- NuMI Beamline Provides
 - High intensity, Wide range of available energies
- MINERvA detector Provides
 - Reconstruction in different nuclei, broad range of final states

0.012

0.010

0.008

0.006

)XIII 0.004

/GeV/m²/10²⁰PO1

Low

and

Energy

Special Run

Fluxes

16 18 20

MINERvA Detector Basics

- Nuclear Targets
 - Allows side by side comparisons between different nuclei
 - Solid C, Fe, Pb, He, water
- Solid scintillator tracker
 - Tracking, particle ID, calorimetric energy measurements
 - Low visible energy thresholds
- Side and downstream Electromagnetic and Hadronic Calorimetry
 - Allow for event energy containment
- MINOS Near Detector
 - Provides muon charge and momentum

MINERVA Data

One out of three views shown, color=energy

Detector Calibrations

 Have calibrated first 18 months of data written to tape: ¼ of total v exposure, all of anti-v exposure

MINERvA:

- use μ from upstream interactions to set energy scale, check with e's from stopped μ decay
- Set hadronic energy scale relative to muon energy deposits using test beam data and equivalent calibration procedure

MINOS:

- compare muon tracks where measurement from both range and curvature are available
- (MINERVA uses much looser fiducial cuts on MINOS ND)

 π^+ : 5% disagreement with MC (no tuning!) π^- look better, p worse

Charged Current Events

- Abundant sample:
 - Require muon matched with MINOS-analyzed track, measure recoil in MINERvA E(v)=E(μ) + recoil energy
- Useful for cross-checks of detector acceptance modeling and stability
 - Will eventually become total cross section measurement vs. energy
- Currently systematics limited

Data

Monte Carlo

Neutrino Mode: 1x10²⁰ POT

Reconstructed Energy (GeV)

Inclusive Nuclear Target Ratios

- Significant reduction in systematic errors when taking ratios of events: MINERvA designed to do this
 - Same cuts as inclusive analysis. Vertex must be in solid targets. Subtract backgrounds from vertex misreconstructions
- First results with 2 targets: allows for ratios of Pb/Fe, Pb/C, Fe/C
 - Double ratio cancels out acceptance uncertainties
- Systematic errors on ratios are already at few per cent level
- Have factor ~20 more data to add to this proof of principle.

Target	Fiducial Mass	ν _μ CC Events in 4×10 ²⁰ POT
Plastic	6.43 tons	1363k
Helium	0.25 tons	56k
Carbon	0.17 tons	36k
Water	0.39 tons	81k
Iron	0.97 tons	215k
Lead	0.98 tons	228k

Quasi-Elastic Scattering

- This interaction is one of the most important in oscillation experiments because backgrounds are low and can estimate neutrino energy simply by measuring muon angle and momentum
- To identify, look for muon and low recoil energy, consistent with recoiling nucleon

Quasi-Elastic Kinematics

Quasi-Elastic Cross Section

- Anti-neutrino Quasi-elastic analysis has results for dσ/dQ²
 - Background subtraction uses data in sidebands
 - Unfold detector resolution in Q²
 - Full suite of syst. errors evaluated
 - Result is something that can be compared with several different models, in search of meson exchange currents (MEC)
- Result will be improved: add more data (x5) and reduce conservative systematic uncertainties

